1.1 - Intro to Economics

What is Economics

- The study of how people seek to satisfy their need and wants by making choices.
- Scarcity
- definition: the concept of having unlimited wants vs. having limited resources

Macroeconomics vs. Microeconomics

- Macroeconomics
- involves economic problems encountered by the nation as a whole
- Microeconomics
- concerned with the economic problems faced by individual unites within the overall economy

Four Factors of Production (Resources)

- Land
- definition: natural resources that are used to make goods and services
- Labor
- definition: the effort that people devote for a paid task
- Capital
- definition: any human-made resource used to create other goods and services
- Physical capital: tools and buildings
- Human capital: skills and knowledge through education and experience
- Entrepreneurship
- definition: a person who uses the three factors of production to create goods and services

Needs vs. Wants

- Need - There is no other alternative
- We do not NEED anything!
- Economics is about placing value on the things that you WANT and making CHOICES based on these wants.
- Movie Tickets

- 5 on the AP Microeconomics Exam 5

- Clothing
- Television
- Friends
- Water

Every Choice Has a Cost

- Nothing is free.

- When you make a choice, the best alternative you gave up as a result is known as the opportunity cost.
- All the possible things that you give up would referred to a trade-off
- Every choice, however large or small, will incur an opportunity cost.

After school, you are faced with three options: watching television, reading a book, or cleaning up the house. You prefer cleaning up the house to reading a book, but prefer watching television to cleaning up the house. What is the opportunity cost of watching television?

Positive Economics vs. Normative Economics

- Positive Economics
- branch of economics analysis that describes the way the economy actually works
- Normative Economics
- branch of economic analysis that interjects subjective claims on how the economy should work
- Positive statement:
- If a new tax is implemented, the state will collect $\$ 1$ million in new revenue.
- If the government provides a safety net for citizens, income taxes will be increased.
- If you spend 15 hours studying AP Microeconomics, you will get a 5 on Microeconomics.
- Normative statement:
- The government should raise taxes on higher income families in order to raise more revenue.
- The government should provide a safety net for those in society that are incapable of thinking care of themselves

Marginal Analysis

- definition: deciding whether to do or use one additional unit of some resource
- Most decision are not "all or nothing" propositions
- Involves deciding whether or not to consume the next unit

> Rational people know that decisions in life are rarely black and white but usually involve shades of gray. At dinnertime, the question you face is not "Should I fast or eat like a pig?" More likely, you will be asking yourself "Should I take that extra spoonful of mashed potatoes?" When exams roll around, your decision is not between blowing them off and studying twenty-four hours a day but whether to spend an extra hour reviewing your notes instead of watching TV. Economists use the term marginal change to describe a small incremental adjustment to an existing plan of action. Keep in mind that margin means "edge," so marginal changes are adjustments around the edges of what you are doing. Rational people often make decisions by comparing marginal benefits and marginal costs.
marginal change
a small incremental adjustment to a plan of action

Economic Profit

- Economic Profit $=$ Accounting Profit - Opportunity Cost

You make $\$ 75,000$ a year at your current job as a teacher for XYZ School District. You are considering a job offer from ABC School District in which the pay is $\$ 100,000$ a year. Should you accept the new job?

Normative issue.
Benefits/Costs:

1.2 - Production Possibilities Frontier

Production Possibilities Frontier

- Graph that shows the combinations of amounts of two items that could be produced using the same resources
- All points on the graph are points of efficiency
- If you don't use all resources, then you have points of underutilization (or inefficiency)
- PPF Graph show alternative ways to use resources but does not show the best way because that is a normative issue.
- Famous "Guns or Butter" Analogy
- Government could use its resources to produce "guns" or military goods.
- Government could use its resources to produce "butter" or domestic goods.
- It highlights the trade-offs an economy faces in using scare resources.

The production possibilities frontier is the graphical portrayal of the information contained in Table 2.1. It shows the combinations of two goods that can be produced if the economy uses all of its resources fully and efficiently. Figure 2.1 is the production possibilities frontier that corresponds to Table 2.1. Points A through G
are plotted with gun production measured on the vertical axis and butter production along the horizontal axis.

Fig. 2.1 Production Possibilities Frontier
The economy has the option of producing any combination of guns and butter along the frontier. At Point B most of the economy's resources are devoted to butter production. Only three guns are produced. At Point F gun production is predominant. Still, the economy is using its resources fully and efficiently at both points. A normative analysis is required to determine which point is preferred. On efficiency grounds all the points along the frontier are equal.

Points inside the frontier (Point I) are possible also. However, if the economy is operating at a point inside the frontier, resources are not being used fully or efficiently. Consider Point I, where 10 pounds of butter and six guns are being produced per year. By the definition of the production possibilities frontier we know that when the economy produces 10 pounds of butter, 12 guns could be produced if resources were used fully and efficiently (Point E). Point I represents a combination of guns and butter that does not require full or efficient resource utilization. The economy could do better by producing some combination of the two goods that lies on the frontier.

Points outside the production possibilities frontier (Point J) are unobtainable. Point J represents a combination of 25 pounds of butter and nine guns per year. By the definition of the production possibilities frontier we know that if 25 pounds of butter are produced, only three guns can be produced (Point B) if resources are used fully and efficiently. Therefore, points outside the frontier cannot be attained at this time.

Shift in the Production Porribilities Frontier

- Points outside the PPF may be attained at some future date because the frontier may shift so that points like J lie along the new frontier.
- The frontier can also shift inward representing a change for the worse.
- Factors that cause the PPF to shift:
- changes in the amount resources in the economy
- change in technology and productivity

FIGURE 3

A Shift in the Production Possibilities Frontier A technological advance in the computer industry enables the economy to produce more computers for any given number of cars. As a result, the production possibilities frontier shifts outward. If the economy moves from point A to point G, then the production of both cars and computers increases.

Increasing Opportunity Cost

- More and more resources are required to produce the same amount of a product
- Curve for this type of PPF graph will be concave.

Constant Opportunity Cost

- Same resources are required to produce a certain amount of a product
- Product Possibilities frontier will be a downward-sloping line.

Opportunity cost and PPF graph

What is the opportunity cost of building 500 more

computers, from 2000 to 2500 ?

What is the opportunity cost of building 500 more cars, from 0 to 500 ?

1.3 - Comparative Advantage \& Trade

Trade and Specialization

- Adam Smith in Wealth of Nations, written in 1776, writes about the benefits of specialization.
- One man draws out the wire, another straights it, a third cuts it, a fourth points it, a fifth grinds it at the top for receiving the head; to make the head requires two or three distinct operations; to put it on, is a particular business, to whiten the pins is another; it is even a trade by itself to put them into paper; and the important business of making a pin is, in this mannar, divided into about eighteen distinct operations... Those ten persons, therefore, could make among them upwards of $\mathbf{4 8 , 0 0 0}$ pins in a day. But if they had all wrought separtely and independently... they certainly could not each of them have made twenty, perhaps not one pin in a day.
- Modern example: I, Pencil: The Movie

Market Economy vs. Command Economy

- In a market economy, production and consumption decisions are the result of decentralized decisions by individuals and firms.
- In a command economy, industry is publicly owned and the government makes
decisions on the allocation of goods and services.
- Most economies are mixed. Specialization and trade are what makes countries prosper.

Absolute Advantage

- A coutry or individual is simply better than another country or individual in producing a particular product.

China can make either $\mathbf{5 0}$ toys or $\mathbf{1 0 0 t}$ t-shirts. Mexico can make either 25 toys or 60 t-shirts.

Who has absolute advantage in toy production? CHINA Because $50>25$

Who has absolute advantage in t -shirt production? CHWA Because $100>60$

Comparative Advantage

- A country or individual has a LOWER opportunity cost than another country or individual in producing a particular product.

Economists use the term comparative advantage when describing the opportunity costs faced by two producers. The producer who gives up less of other goods to produce Good X has the smaller opportunity cost of producing Good X and is said to have a comparative advantage in producing it. In our example, Frank has a lower opportunity cost of producing potatoes than Rose: An ounce of potatoes costs Frank only $1 / 4$ ounce of meat, but it costs Rose $1 / 2$ ounce of meat. Conversely, Rose has a lower opportunity cost of producing meat than Frank: An ounce of meat costs Rose 2 ounces of potatoes, but it costs Frank 4 ounces of potatoes. Thus, Frank has a comparative advantage in growing potatoes, and Rose has a comparative advantage in producing meat.

Although it is possible for one person to have an absolute advantage in both goods (as Rose does in our example), it is impossible for one person to have a comparative advantage in both goods. Because the opportunity cost of one good is the inverse of the opportunity cost of the other, if a person's opportunity cost of one good is relatively high, the opportunity cost of the other good must be relatively low. Comparative advantage reflects the relative opportunity cost. Unless two people have the same opportunity cost, one person will have a comparative advantage in one good, and the other person will have a comparative advantage in the other good.

- Examples 1

Remember, China can make either 50 toys or $\mathbf{1 0 0}$ tshirts. Mexico can make either $\mathbf{2 5}$ toys or $\mathbf{6 0}$ t-shirts.
Who has comparative advantage in toy production?
Who has comparative advantage in t-shirt

- Examples 2
- Matt can make 10 baseballs or 5 gloves in one hour while Andre can make 12 baseball or 3 gloves in an hour. Determine who has comparative advantage in making baseballs and in making gloves.

1 baseball $=\frac{1}{2}$ gloves
1 glove $=2$ baseballs
Andre.

Matt has comp. adv. in Andre has comp.
baseball.
1 baseball $=\frac{1}{4}$ gloves

$$
\text { I glove }=4 \text { baseball }
$$

- Examples 3
- In India, 4 car can be produced by 8 workers in one day and a computer by 3 workers in one day. In the US, 3 cal can be produced by workers in one day, and a computer by 2 workers in one day. Which of the following statements is FALSE?

$$
\begin{array}{ll}
& \rightarrow \text { us has a comp. adv in compute } \\
\text { False }
\end{array}
$$ Neither country has absolute advantage in making computers. \qquad

rat The US has absolute advantage in making cars. False The US has comparative advantage in making cars.
ane The US has comparative advantage in making computers.
Tue India has comparative advantage in making cars.

Comparative Advantage \& PPF Graph

- Flatter slope will have comparative advantage in the x-axis good.
- Steeper slope will have comparative advantage in the y-axis good.
- Below is the Production Possibilities Frontier for Country A and Country B. Who has comparative in steak and in chicken?

1.4-Utility Maximization

Utility vs. Marginal Utility

- Utility
- arbitrary measure of benefit one receives from an activity (measured in utils)
- Marginal Utility
- change in total utility generated by consuming one additional unit of that good or service
- Air, for example, is necessary for survival but tends to have little value in terms of marginal utility.
- Diamonds, on the other hand, provides lots of marginal utility for many consumer.

Marginal Utility Per Dollar

- The marginal utility per dollar spent on a good considers budge constrains
- Formula:
- $\frac{M U_{\text {good }}}{P_{\text {good }}}$
- We are constrained by a budget.
- The role of scarcity comes into play when making consumer choices.
- Example:
- We prefer a vacation to Hawaii over a movie, but we must consider the cost of each decision.
- If Hawaii's marginal utility is 500 but costs $\$ 500$, and a movie's marginal utility is 50 but costs $\$ 10$, what do we choose?
- Marginal Utility Per Dollar for Hawaii:

$$
\frac{M U_{\text {good }}}{P_{\text {good }}}=\frac{500}{500}=1
$$

- Marginal Utility Per Dollar for movie:

$$
\frac{M U_{\text {good }}}{P_{\text {good }}}=\frac{50}{10}=5
$$

- Since 5 > 1, choose movie

Diminishing Marginal Utility

- As a person increases consumption, there is a decline in the marginal utility from consuming each additional unit of that product.
- You get less "bang for your buck"
- Applies to most, if not all, products at a certain point.
- All You Can Eat restaurant can stay in business because of this principle.

Optimal Consumption Bundle

- Marginal utility per dollar must be equal for both products
- Formula:

$$
\circ \frac{M U_{A}}{P_{A}}=\frac{M U_{B}}{P_{B}}
$$

- Consumers instinctively follow this rule.
- Within a limited budget, we are required to make choices based on what we value.
- Keep on selecting the item that has the HIGHER marginal utility per dollar.
- Due to diminishing marginal utility, that value begin to fall until equals the marginal utility per dollar for the other item.
- Example 1

Zach spends all his money on wine and cheese. A bottle of wine costs $\$ 30$. A pound of cheese costs $\$ 10$. At his current consumption, Zach's marginal utility of a bottle of wine is 90 utils while it's 50 utile for a pound of cheese. In order to maximize utility, what should Zach do?

Optimal Consumption Bundle: $\frac{M U_{A}}{P_{A}}=\frac{M U_{B}}{P_{A}}$

$\frac{90}{\$ 30} \neq \frac{50}{\$ 10}$
Since $5>3$, Zach will
[3] $\neq 5 \checkmark \quad$ increase consump of cheese and

- Example 2

Find the marginal utility and marginal utility per dollar for the following if apples cost $\$ 1$ and oranges \$2.)

$$
\frac{M U_{A}}{P_{A}}=\frac{M V_{B}}{P_{B}}
$$

Apples
Oranges

- Example 3

Find the optimal consumption bundle for steak and chicken with a $\$ 25$ budget. Steak is $\$ 10$. Chicken is $\$ 5$.

Steak		Chicken		
Quantity	MU per $\$$		Quantity	MU per $\$$
1				
1	$10 \checkmark$	1	15	\checkmark
2	8	2	10	
3	6	3	9	\checkmark
4	4	4	7	
5	2	5	5	

$$
\begin{aligned}
& \$ 25 \text { Budget } \\
& -101 \text { stedk } \\
& 102 \text { Chicker } \\
& 51 \text { chicern } 10 \\
& \$ 0
\end{aligned}
$$

- Example 4

Cookies Brownies

Quantity of Purchase 12 pounds 5 pounds

Price per Pound
MU of Last Pound
$\$ 2$
\$4
24

Penny spends all her money on two goods: cookies and brownies. In order to maximize her utility, should Penny purchase more cookies and less brownies, purchase more brownies and less cookies, or maintain her current consumption? Explain.
$\frac{M U_{C}}{P_{C}}=\frac{M U_{B}}{P_{B}}$
Penny should
consume more

$\frac{24}{44}=6^{2}$
Brownie brownies, $12>6$.

2.1 - Price \& Quantity

Supply and Demand

- Supply and demand model
- a model of how a competitive market functions
- The demand curve
- The supply curve
- The determinants of demand and supply
- The equilibrium price and quantity

Demand Schedule and Demand Curve

- The law of demand
- A higher price leads to a lower quantity demaned
- A lower price leads to a higher quantity demanded
- Demand schedule vs. demand curve
- A demand schedule is a table that shows the quantity demanded at each price.
- A demand curve is a graph that shows the quantity demanded at each price
- Demand vs. quantity demanded

| demand | the relationship between a range of prices and the quantities
 demanded at those prices, as illustrated by a demand curve or a
 demand schedule. |
| :--- | :--- | :--- |

- Demand refers to the curve, and quantity demanded refers to a specific point on the curve.
- If price increases, what happens?
- No change in demand
- Decrease in quantity demanded
- Graphical Comparison
- Show the difference between a change in quantity demanded for DVDs and a change in demand for DVDs.

DVD

- Demand curve
- Horizontal axis: Quantity Demanded
- Vertical axis: Price

Shift of the Demand Curve

- Changes in the price of related goods
- Substitutes (positive correlation)
- fall in the price of one goods makes consumers less willing to buy the other good
- Complements (negative correlation)
- fall in the price of one of the goods makes consumers more willing to buy the other good
- How to remember
- Kids are positive when having a substitute teacher
- We lived in a cynical world. If someone gives you a complement, the true intention might be negative.
- Changes in income
- Normal goods
- rise in income increases demand
- ie. computers, Disneyland, steak
- Inferior goods
- rise in income decreases demand
- ie. macaroni \& cheese, top ramen
- Normal goods vs. inferior goods

Why do we say "most goods," not "all goods"? Most goods are normal goodsthe demand for them increases when consumer income rises. However, the demand for some products falls when income rises. Goods for which demand decreases when income rises are known as inferior goods. Usually an inferior good is one that is considered less desirable than more expensive alternatives-such as a bus ride versus a taxi ride. When they can afford to, people stop buying an inferior good and switch their consumption to the preferred, more expensive alternative. So when a good is inferior, a rise in income shifts the demand curve to the left. And, not surprisingly, a fall in income shifts the demand curve to the right.

- Changes in tastes
- Why do people want what they want?
- Changes due to fad, beliefs, cultural shifts are all clumped together under preferences.
- Changes in expectations
- If you expect more income in the future, demand for certain goods (ie. car or refrigerator) might increase
- If expectation of a future price drop of items exist, then the demand for these items drop today, almost like a self-fulfilling prophecy.
- Graph

(a) Factors that increase demand

(b) Factors that decrease demand
- Summary

TABLE 3-1

Factors That Shift Demand

Changes in the prices of related goods or services		
If A and B are substitutes . .	\ldots and the price of B rises, demand for A increases.
	\ldots and the price of B falls, demand for A decreases.
If A and B are complements . .	\ldots and the price of B rises, demand for A decreases.
	. . . and the price of B falls, demand for A increases.
Changes in income		
If A is a normal good. and income rises, demand for A increases.
	. . . and income falls, demand for A decreases.
If A is an inferior good...	. . . and income rises, demand for A decreases.
	. . . and income falls, demand for A increases.
Changes in tastes		
	If tastes change in favor of A, \ldots	. . demand for A increases.
	If tastes change against A, \ldots	. . . demand for A decreases.
Changes in expectations		
	If the price of A is expected to rise in the future, demand for A increases today.
	If the price of A is expected to fall in the future, demand for A decreases today.
If A is a normal good and income is expected to rise in the future, demand for A may increase today.
	. . . and income is expected to fall in the future, demand for A may decrease today.
If A is an inferior good...	. . . and income is expected to rise in the future, demand for A may decrease today.
	. . . and income is expected to fall in the future, demand for A may increase today.
Changes in the number of consumers		
	If the number of consumers of A rises, market demand for A increases.
	If the number of consumers of A falls, market demand for A decreases.

- The law of supply
- A higher price leads to a higher quantity supplied.
- A lower price leads to a lower quantity supplied.
- Supply schedule vs. supply curve
- A supply schedule is a table that shows the quantity supplied at each price.
- A supply curve is a graph that shows the quantity supplied at each price.
- Supply vs. quantity supplied

supply	the relationship between a range of prices and the quantities supplied at those prices, as illustrated by a supply curve or a supply schedule.
quantity supplied	only a certain point on the supply curve or one quantity on the supply schedule

- Supply refers to the curve, and quantity supplied refers to a specific point on the curve.
- If price increase, what happens to supply?
- Nothing
- This is a change in quantity supplied not supply

Shifts of the Supply Curve

- Changes in input prices
- Input is a good used to produce another good
- ie. cheese in a cheese pizza
- Change in technology
- All the ways in which people can turn more inputs into useful goods
- For example, an improved strain of corn resistant to disease increase supply of corn.
- Change in expectations
- If expectations of a future price increase of items exist, then supplier will tend to hoard the item in order to make more profit in the future.
- Related goods
- If the price of other things I can produce goes up, then my supply of grapes, once again, would go down.

- Graph

(a) Factors that increase supply

(b) Factors that decrease supply
- Summary

TABLE 3-2
Factors That Shift Supply
Changes in input prices
If the price of an input used to produce A rises, supply of A decreases.
If the price of an input used to produce A falls, supply of A increases.
Changes in the prices of related goods or services

| If A and B are substitutes in production \ldots | \ldots and the price of B rises, \ldots | \ldots supply of A decreases. | |
| :--- | :--- | :--- | :--- | :--- |
| If A and B are complements in production \ldots | \ldots and the price of B rises, \ldots | \ldots supply of A increases. | |
| | \ldots and the price of B falls, \ldots | \ldots supply of A increases. | |
| Changes in technology | \ldots supply of A decreases. | | |
| | If the technology used to produce A improves, \ldots | \ldots supply of A increases. | |
| Changes in expectations | If the price of A is expected to rise in the future, \ldots | \ldots supply of A decreases today. | |
| | If the price of A is expected to fall in the future, \ldots | \ldots supply of A increases today. | |
| Changes in the number of producers | | If the number of producers of A rises, \ldots | \ldots market supply of A increases. |

Supply, Demand, and Equilibrium

- Equilibrium price
- price that clears the market
- Equilibrium quantity
- quantity of good bought and sold at market-clearing price
- Equilibrium
- where the supply and demand curves intersect
- Graph

Surplus \& Shortage

- Surplus
- when quantity supplied exceeds quantity demanded
- $Q_{s}>Q_{D}$
- Surplus $=Q_{S}-Q_{D}$
- Shortage
- when quantity demanded exceeds quantity supplied
- $Q_{D}>Q_{S}$
- Shortage $=Q_{D}-Q_{S}$
- Graph

2.2 - Supply \& Demand

Shifts of the Demand or Supply Curve

- Demand shift to the right
- Increase in equilibrium price
- Increase in equilibrium quantity
- Demand shift to the left
- Decrease in equilibrium price
- Decrease in equilibrium quantity
- Supply shift to the right
- Decrease in equilibrium price
- Increase in equilibrium quantity
- Supply shift to the left
- Increase in equilibrium price
- Decrease in equilibrium quantity
- Graph

FIGURE 10

How an Increase in Demand Affects the Equilibrium An event that raises quantity demanded at any given price shifts the demand curve to the right. The equilibrium price and the equilibrium quantity both rise. Here an abnormally hot summer causes buyers to demand more ice cream. The demand curve shifts from D_{1} to D_{2}, which causes the equilibrium price to rise from $\$ 2.00$ to $\$ 2.50$ and the equilibrium quantity to rise from 7 to 10 cones.

How a Decrease in Supply Affects the Equilibrium
An event that reduces quantity supplied at any given price shifts the supply curve to the left. The equilibrium price rises, and the equilibrium quantity falls. Here an increase in the price of sugar (an input) causes sellers to supply less ice cream. The supply curve shifts from $S 1$ to $S 2$, which causes the equilibrium price of ice cream to rise from $\$ 2.00$ to $\$ 2.50$ and the equilibrium quantity to fall from 7 to 4 cones.

- Examples

Example I

D+

- Demand for steak (increase in income)
- Steaks are normal goods
- Equilibrium Price _ _ \& Equilibrium Quantity $^{\text {- }}$ _全-

- Supply of Pizza (decrease in cost of cheese, which is an input)
- Equilibrium Price \downarrow_{-}\& Equilibrium Quantity -

Shifts of Both the Demand and Supply Curves

- Demand \& supply shift to the right
- Increase in equilibrium quantity
- Equilibrium price unsure
- Demand \& supply shift to the left
- Decrease in equilibrium quantity
- Equilibrium price unsure
- Supply shift to the left and demand shift to the right
- Increase in equilibrium price
- Equilibrium quantity unsure
- Supply shift to the right and demand shift to the left
- Decrease in equilibrium price
- Equilibrium quantity unsure
- Graph

FIGURE 12

A Shift in Both Supply and Demand

Here we observe a simultaneous increase in demand and decrease in supply. Two outcomes are possible. In panel (a), the equilibrium price rises from P_{1} to P_{2} and the equilibrium quantity rises from Q_{1} to Q_{2}. In panel (b), the equilibrium price again rises from P_{1} to P_{2} but the equilibrium quantity falls from Q_{1} to Q_{2}.
(a) Price Rises, Quantity Rises

(b) Price Rises, Quantity Falls

- Summary
- Change in same direction: equilibrium quantity for sure
- Change in opposite direction: equilibrium price for sure
- Examples
- Demand and Supply of Gas Guzzling SUV (Price of gasoline falls and wages of auto workers
increases) Complements
S^{-}
- Equilibrium Price - $\underbrace{}_{-}$\& Equilibrium Quantity -?

Example VI

- Demand and Supply of Coca-cola (Price of Pepsi Cola falls and cost of aluminum increases)
- Equilibrium Price ?? $?_{-}^{9-}$ \& Equilibrium Quantity - \downarrow

Changes in equilibrium

	No Change in Supply	An Increase in Supply	A Decrease in Supply
No Change in Demand	P same Q same	P down Q up	P up Q down
An Increase	P up	P ambiguous	P up
in Demand	Q up	Q up	Q ambiguous
A Decrease	P down	P down in Demand	Q down

2.3 - Price Controls

Why Price Controls are Inefficient

- Price controls
- legal restrictions on how high or low a market price may go
- Price ceiling
- a maximum price sellers are allowed to charge for a good or service
- Price floor
- a minimum price buyers are required to pay for a good or service
- Whether the government tries to legislate price (up or down), there are predictable and unpleasant side effects.

Effective Price Ceiling

- Effective price ceilings must be below equilibrium price
- Rent control
- government attempt in regulating price on apartments
- Predictable outcome of housing shortage and emergence of black markets
- Graph
(a) A Price Ceiling That Is Not Binding

(b) A Price Ceiling That Is Binding

How a Price Ceiling Causes Inefficiency

- Inefficiently allocation to consumers
- Those who want an apartment the most do not necessarily get it.
- At $\$ 1000$, someone who was willing to pay $\$ 2000$ may not get the apartment when the price is low.
- Wasted resources
- Price ceilings on gas led to shortages and forced millions of American to spend hours waiting in lines at gas stations. OPPORTUNITY COST!
- Inefficiently low quality
- Sellers have little incentive to improve the quality of their product.
- Landlords have a perverse incentive to only meet the bare, minimum requirements

Effective Price Floor

- Effective price floors must be above the equilibrium price.
- Minimum wage
- government attempt in regulating the labor market in order to give workers a "fair" wage
- Predictable outcome of having surplus of labor (or unemployment)
- What happens when a price floor on butter is set at $\$ 2.00$ a pound when the equilibrium is $\$ 1.50$
- Predictable, there is a surplus of butter
- Governments will stash away surplus, give away to schools, export at a loss, simply destroy the excess or pay farmers NOT to product at all.

- Graph

FIGURE 5
How the Minimum Wage Affects the Labor Market

Panel (a) shows a labor market in which the wage adjusts to balance labor supply and labor demand. Panel (b) shows the impact of a binding minimum wage. Because the minimum wage is a price floor, it causes a surplus: The quantity of labor supplied exceeds the quantity demanded. The result is unemployment.
(a) A Free Labor Market

(b) A Labor Market with a Binding Minimum Wage

How a Price Floor Causes Inefficiency

- Inefficiently Low Quantity
- Same impact as a price ceiling in having less quantity of goods bought and sold
- Wasted Resources
- Just like families unsuccessfully looking for apartments under a price ceiling, workers won't find jobs in a price floor.
- Inefficiently high quality
- Unable to compete for customers for lower prices, airlines provided lavish excesses consumers didn't want

Ineffective price controls

- If the equilibrium price of an airline flight from LAX to Heathrow airport is $\$ 1,000$, what is the impact of a price floor of $\$ 800$ for a flight?

2.4 - Price Elasticity of Demand

What is Elasticity of Demand

- Price elasticity of demand (PED or E_{d})
- Measure used to show the responsiveness, or elasticity, of the quantity demanded of a good or service to a change in price.
- Devised by Alfred Marshall, using the ceteris paribus (all other things being equal) assumption, price elasticity shows by how much quantity changes as a result of a change in price. (Disregard the negative)
- Formula

- How to remember
- Queen is greater than the Princess

The Variety of Demand Curves

The price elasticity of demand determines whether the demand curve is steep or flat. Note that all percentage changes are calculated using the midpoint method.

FIGURE 1
The Price Elasticity of Demand

Elastic Demand

- When $\mathbf{e}>\mathbf{1}$, demand is elastic, or the percent change in quantity is greater than the
- It means that the product is relatively price-sensitive
- ie. fast-food restaurants, fruits, haircuts
- Demand curve is relatively flat.

Inelastic Demand

- When $\mathbf{e}<\mathbf{1}$, demand is inelastic, or the percent change in quantity is less than the percent change in price.
- It means that the product is not very sensitive to a change in price
- ie. gasoline, insulin
- Demand curve is relatively steep.

Price Elasticity of Demand and Total Revenue

- The total amount paid by buyers, and received as revenue by sellers, equals the area of the box under the demand curve.

- When demand is inelastic $(\mathbf{e}<1)$, price and total revenue move in the same direction:
- If the price increases, total revenue also increases.
- When demand is elastic (e>1), price and total revenue move in opposite directions:
- If the price increase, total revenue decreases.
- If demand is unit elastic $(\mathrm{e}=1)$, total revenue remains constant when the price changes.

- Examples

Example I
If the price of an economics textbook is $\$ 100$ you
 sell 100 , find the elasticity of demand. Is it elastic or inelastic? Find the total revenue. Did it increase or decrease? By how much?

$$
\begin{aligned}
& E_{0}=\left|\frac{\% \Delta Q_{0}}{\% \Delta P}\right|=\left|\frac{\frac{90-100}{90}}{\frac{100-80}{100}}\right|=\left|\frac{\frac{10}{90}=\frac{-1}{9}}{\frac{20}{100}=\frac{1}{5}}\right| \\
&= \frac{1}{9} \times \frac{5}{1}=\frac{5}{9} \\
& T R_{1}=p * q=100 \times 90=\$ 9000 \\
& T R_{2}=p * q=\$ 90 \times 100=\$ 9000
\end{aligned}
$$

If item is inelastic, when you lower the price, the revenue decreases.
If item is inelastic, when you raise the price, the revenue increase.

Example II

If the price of an Academic Decathlon t-shirt is $\begin{gathered}P_{1} \\ \$ 10 \\ \$ 10\end{gathered}$, you sell 200 shirts but if you raise the price to $\$ \underline{15}$, you sell 100 , ${ }^{\text {Q }}$ find the elasticity of demand. Is it elastic or inelastic? Find the total revenue. Did it increase or decrease? By how much?

$$
E_{0}=\frac{\frac{Q_{1}-Q_{2}}{Q_{1}}}{\frac{P_{1}-P_{2}}{P_{1}}}=\left|\frac{\frac{200-100}{100}}{\frac{10-15}{10}}\right|=\frac{\frac{100}{100}=1}{\frac{5}{10}=\frac{1}{2}}=1 \times 2 \cdot 2
$$

If elastic, when you raise the price, $T R \downarrow$. If elastic, when you lower the price, TR \uparrow.

$$
\begin{aligned}
& T R_{1}=p_{1} \times q_{1}=10 \times 200=\$ 200 \\
& T R_{2}=p_{2} \times q_{2}=15 \times 100=\$ 150
\end{aligned}
$$

$\$ 50$ decrease

Midpioint Method to Find Elasticity

- Definition

One way to avoid this problem is to use the midpoint method for calculating elasticities. The standard procedure for computing a percentage change is to divide the change by the initial level. By contrast, the midpoint method computes a percentage change by dividing the change by the midpoint (or average) of the initial and final levels. For instance, $\$ 5$ is the midpoint between $\$ 4$ and $\$ 6$. Therefore, according to the midpoint method, a change from $\$ 4$ to $\$ 6$ is considered a 40 percent rise because $(6-4) / 5 \times 100=40$. Similarly, a change from $\$ 6$ to $\$ 4$ is considered a 40 percent fall.

Because the midpoint method gives the same answer regardless of the direction of change, it is often used when calculating the price elasticity of demand between two points. In our example, the midpoint between point A and point B is:

$$
\text { Midpoint: } \quad \text { Price }=\$ 5 \quad \text { Quantity }=100
$$

According to the midpoint method, when going from point A to point B, the price rises by 40 percent and the quantity falls by 40 percent. Similarly, when going from point B to point A , the price falls by 40 percent and the quantity rises by 40 percent. In both directions, the price elasticity of demand equals 1 .

The following formula expresses the midpoint method for calculating the price elasticity of demand between two points, denoted $\left(Q_{1}, P_{1}\right)$ and $\left(Q_{2}, P_{2}\right)$:

$$
\text { Price elasticity of demand }=\frac{\left(Q_{2}-Q_{1}\right) /\left[\left(Q_{2}+Q_{1}\right) / 2\right]}{\left(P_{2}-P_{1}\right) /\left[\left(P_{2}+P_{1}\right) / 2\right]} \text {. }
$$

- Comparison

If the price of 2 slices of Pepperoni Pizza is $\$ 4$, you sell 10. If you raise the price to $\$ 5$, you will sell $6^{Q_{2}}$ Find the elasticity of demand using both the point and midpoint methods. Is it elastic or inelastic? Find the total revenue. Did revenue increase or decrease? By how much?

$$
\begin{aligned}
& E_{D}=\frac{\% \Delta Q}{\% \Delta P}=\frac{\frac{Q_{1}-Q_{2}}{Q_{1}}}{\frac{P_{1}-P_{2}}{P_{1}}} \\
&=\frac{\frac{10-6}{10}=\frac{4}{10}=\frac{2}{5}}{\frac{4-5}{4}=\left|\frac{-1}{4}\right|=\frac{1}{4}} \\
& \frac{2}{5} \times \frac{4}{1}=\frac{8}{5}=1.6
\end{aligned}
$$

$$
\begin{gathered}
E_{0}=\frac{\frac{Q_{2}-Q_{1}}{\left(Q_{1}+Q_{2}\right)}}{2}=\left|\frac{6-10}{\left.\frac{(6+10}{2}\right)}\right|=\frac{4}{8}=\frac{1}{2} \\
\frac{P_{2}-P_{1}}{\frac{\left(P_{1}+P_{2}\right)}{2}}=\left|\frac{5-4}{\frac{4+5}{2}}\right|=\frac{1}{\frac{9}{2}}=\frac{2}{9} \\
\frac{1}{2} \times \frac{9}{2}=\frac{9}{4}=2.25 \\
T R_{1}=P_{1} \times q_{1}=\$ 4 \times 10=\$ 40 \\
=P_{2} \times q_{2}=\$ 5 \times 6=\$ 30 \\
\text { decreases } 64 \$ 10
\end{gathered}
$$

Factors That Determine Price Elasticity

- Whether close substitutes are available
- Tends to be high if consumers are willing to replace with substitutes.
- Tends to be low if there are no close substitutes
- Whether the good is necessity or a luxury
- Life-saving medication will be inelastic but things you can live without tend to be elastic
- Time
- PED tends to increase over time
- ie. demand for gas is more elastic as behavior changes
- Share of income spend on the good
- Elasticity of demand tends to be low when prices are lower
- Conversely, PED is higher when prices are higher

Price Elasticity Along the Demand Curve

- Price and total revenue

Inelastic	Price \uparrow	Total Revenue \uparrow
Inelastic	Price \downarrow	Total Revenue \downarrow
elastic	Price \uparrow	Total Revenue \downarrow
elastic	Price \downarrow	Total Revenue \uparrow

- Graph

- Example

Example V

- Assuming that your goal is to maximize revenue, what portion of the demand curve will you be operating on: elastic, unit-elastic, or inelastic? Explain.

The slope of a linear demand curve is constant, but its elasticity is not. The demand schedule in the table was used to calculate the price elasticity of demand by the midpoint method. At points with a low price and high quantity, the demand curve is inelastic. At points with a high price and low quantity, the demand curve is elastic.

FIGURE 4
Elasticity of a Linear Demand Curve

Price	Quantity	Total Revenue (Price \times Quantity)	Percentage Change in Price	Percentage Change in Quantity	Elasticity	Description
$\$ 7$	0	$\$ 0$	15	200	13.0	Elastic
6	2	12	18	67	3.7	Elastic
5	4	20	22	40	1.8	Elastic
4	6	24	29	29	1.0	Unit elastic
3	8	24	40	22	0.6	Inelastic
2	10	20	67	18	0.3	Inelastic
1	12	12		15	0.1	Inelastic
0	14	0				

2.5 - Income, Cross-Price \& Supply Elasticities

Cross-price elasticity of demand ($\mathrm{E}_{\mathrm{A}, \mathrm{B}}$)

- Meaning
- Measure used to show the change in the price of one good affecs the demand for another good.
- Formula
- Percentage change in Quantity Demanded of Good A divided by Percentage change in Price of Good B
- $E_{A, B}=\frac{\% \Delta Q_{A}}{\% \Delta P_{B}}$

The Cross-Price Elasticity of Demand The cross-price elasticity of demand measures how the quantity demanded of one good responds to a change in the price of another good. It is calculated as the percentage change in quantity demanded of good 1 divided by the percentage change in the price of good 2 . That is,

Cross-price elasticity of demand $=\frac{\text { Percentage change in quantity demanded of good } 1}{\text { Percentage change in the price of good } 2}$.

Substitutes

- Definition
- If the coefficient is positive, then the two items are substitutes.
- *Do NOT find the absolute value for cross-price elasticity!
- $\mathrm{E}_{\mathrm{A}, \mathrm{B}}$ and substitutes
- The higher the number, the more perfect the two items are as substitutes.
- The lower the number, the less perfect the two items are as substitutes.
- Price change and quantity demanded
- If the price of Good A increases, then the quantity demanded of Good B will increase.
- If the price of Good A decreases, then the quantity demanded of Good B will decrease.
- Example

If the price of Coca-cola increases by 20%, and the quantity demanded of Pepsi increases by 30%. Calculate the cross-price elasticity of Coke.

$$
\begin{aligned}
& E_{A, B}= \frac{+30 \%}{+20 \%}=1.5 \\
& \text { Since positive, } \\
& \text { Coke and Pepsi are SUBSTITUTES }
\end{aligned}
$$

Complements

- Definition
- If the coefficient is negative, then the two items are complements.
- *Do NOT find the absolute value for cross-price elasticity!
- $\mathrm{E}_{\mathrm{A}, \mathrm{B}}$ and substitutes
- The more negative the number, the more perfect the two items are as complements.
- The less negative the number, the less perfect the two items are as complements.
- Price change and quantity demanded
- If the price of Good A increases, then the quantity demanded of Good B will decrease.
- If the price of Good A decreases, then the quantity demanded of Good B will increase.
- Example

If the price of skis goes up by 20% and the quantity demanded of ski boots goes down by 25%. Calculate the cross-price elasticity of ski boots.

$$
\begin{gathered}
E_{A, B}=\frac{\% \Delta Q_{B}}{\% \Delta P_{A}}=\frac{+25 \%}{-20 \%}=\frac{5}{4}=1.25 \\
\text { Because coeffricient is NEGATIVE, } \\
\text { the two ifems are COMPLEMENTS }
\end{gathered}
$$

Income Elasticity of Demand

- Meaning
- Measures how changes in income affect the demand for a good
- Normal good vs. Inferior good
- If the income elasticity of demand is positive, then it's a normal good.
- If the income elasticity of demand is negative, then it's a inferior good.
- Income-elastic vs. income-inelastic
- If the income elasticity of demand is greater than 1, then it is income-elastic
- If the income elasticity of demand is less than 1, then it is income-inelastic
- Formula
- Percentage change in Quantity Demanded Divided by Percentage change in Income
- Income Elasticity $=\frac{\% \Delta Q}{\% \Delta I}$
- Example 1
- Income elastic good:

$$
\begin{gathered}
I_{1}=50,000 \quad Q_{1}=200 \quad \frac{\frac{1}{2}}{\frac{1}{6}}=\frac{1}{2} \times 6=3 \\
I_{2}=60,000 \quad Q_{2}=400 \\
\begin{array}{c}
\text { Income } \\
\text { elasticity }
\end{array}=\frac{\frac{Q_{2}-Q_{1}}{Q_{1}}}{\frac{I_{2}-I_{1}}{I_{1}}}=\frac{\frac{400-200}{400}=\frac{200}{400}=50 \%=\frac{1}{2}}{\frac{60 \mathrm{~K}-50 \mathrm{~K}}{60 \mathrm{~K}}=\frac{10 \mathrm{~K}}{60 \mathrm{~K}}=\frac{1}{6}=16.7 \%}
\end{gathered}
$$

- Example 2
- ceteris paribus: all other things being equal

Ceteris paribus, if incomes increase from $\$ 75,000$ to $\$ 100,000{ }^{5,2}$ and the number of Chevettes sold decreases from 1000 to 900 , what is the income elasticity of demand? Is a Chevette a normal or inferior good?

$$
\begin{aligned}
\text { Income } E_{D} & =\frac{\% \Delta Q_{D}}{\%_{0} \Delta I}=\frac{\frac{1000-900}{1000}=\frac{100}{1000}=\frac{1}{10}}{\frac{75 K-100 \mathrm{~K}}{75 K}=\frac{-25 \mathrm{~K}}{75 \mathrm{~K}}=-\frac{1}{3}} \\
& =\frac{1}{10} \times \frac{-3}{1}=-\frac{3}{10}=-0.3
\end{aligned}
$$

Chevettes are inferior goods because the coefficient is NEGATIVE!

- Example 3

If incomes decrease from 20% and people buy 50% less ice cream, find the income elasticity of demand. Is ice cream a normal or inferior good? Is it incomeelastic or income-inelastic? Why?

$$
\begin{aligned}
& \text { Income } E_{0}= \frac{\% \Delta Q}{\% \Delta I}=\frac{-50 \%}{-20 \%}=2.5 \\
& \text { Ice cream is a NORMAL GOOD } \\
& \text { because the coefficient is positive. } \\
& \text { Income-elastic } \quad \begin{array}{l}
\text { because coefficient is } \\
\text { greater than } 1^{\circ} .
\end{array}
\end{aligned}
$$

Price Elasticity of Supply

- Meaning
- Measure of responsiveness of the quantity of a good supplied to the price of that good
- Formula
- Percentage change in quantity supplied divided by the percentage change in price
- Elasticity of Supply $=\frac{\% \Delta Q_{S}}{\% \Delta P}$
- Availability of inputs affects elasticity
- Supply of pizza tends to be very elastic

Panel (b) shows the supply curve for pizza. We suppose that it costs $\$ 12$ to produce a pizza, including all opportunity costs. At any price below $\$ 12$, it would be unprofitable to produce pizza and all the pizza parlors would go out of business. At a price of $\$ 12$ or more, there are many producers who could operate pizza parlors. The ingredientsflour, tomatoes, cheese-are plentiful. And if necessary, more tomatoes could be grown, more milk could be produced to make mozzarella cheese, and so on. So by allowing profits, any price above $\$ 12$ would elicit the supply of an extremely large quantity of pizzas. The implied supply curve is therefore a horizontal line at $\$ 12$. Since even a tiny increase in the price would lead to an enormous increase in the quantity

- Supply of cell phone frequencies is zero. The input (radio spectrum) cannot be changed

As in the case of demand, the extreme values of the price elasticity of supply have a simple graphical representation. Panel (a) of Figure 48.1 shows the supply of cell phone frequencies, the portion of the radio spectrum that is suitable for sending and receiving cell phone signals. Governments own the right to sell the use of this part of the radio spectrum to cell phone operators inside their borders. But governments can't increase or decrease the number of cell phone frequencies they have to offer-for technical reasons, the quantity of frequencies suitable for cell phone operation is fixed. So the supply curve for cell phone frequencies is a vertical line, which we have assumed is set at the quantity of 100 frequencies. As you move up and down that curve, the change in the quantity supplied by the government is zero, whatever the change in price. So panel (a) illustrates a case of perfectly inelastic supply, meaning that the price elasticity of supply is zero.

- Graph

FIGURE 5

The Price Elasticity of Supply

The price elasticity of supply determines whether the supply curve is steep or flat. Note that all percentage changes are calculated using the midpoint method.
(b) Inelastic Supply: Elasticity Is Less Than 1

(c) Unit Elastic Supply: Elasticity Equals 1

2. ... leads to a 22% increase in quantity supplied.

Name	Possible values	Significance
$\text { Price elasticity of demand }=\frac{\% \text { change in quantity demanded }}{\% \text { change in price }} \text { (dropping the minus sign) }$		
Perfectly inelastic demand	0	Price has no effect on quantity demanded (vertical demand curve).
Inelastic demand	Between 0 and 1	A rise in price increases total revenue.
Unit-elastic demand	Exactly 1	Changes in price have no effect on total revenue.
Elastic demand	Greater than 1, less than ∞	A rise in price reduces total revenue.
Perfectly elastic demand	∞	A rise in price causes quantity demanded to fall to 0 . A fall in price leads to an infinite quantity demanded (horizontal demand curve)
Cross-price elasticity of demand $=\%$ change in quantity of one good demanded		
\% change in price of another good		
Complements	Negative	Quantity demanded of one good falls when the price of another rises.
Substitutes	Positive	Quantity demanded of one good rises when the price of another rises.
Income elasticity of demand $=\frac{\% \text { change in quantity demanded }}{}$		
\% change in income		
Inferior good	Negative	Quantity demanded falls when income rises.
Normal good, income-inelastic	Positive, less than 1	Quantity demanded rises when income rises, but not as rapidly as income.
Normal good, income-elastic	Greater than 1	Quantity demanded rises when income rises, and more rapidly than income.
Price elasticity of supply $=$ \% change in quantity supplied		
\% change in price		
Perfectly inelastic supply	0	Price has no effect on quantity supplied (vertical supply curve).
	Greater than 0 , less than ∞	Ordinary upward-sloping supply curve.
Perfectly elastic supply	∞	Any fall in price causes quantity supplied to fall to 0 . Any rise in price elicits an infinite quantity supplied (horizontal supply curve).

2.6 - Total Surplus, Deadweight Loss \& World Trade

Consumer Surplus

- Meaning
- the difference between the buyer's willingness to pay versus what he actually pays
- Graph
- On a supply and demand graph, the area of consumers surplus (CS) is below the demand curve but above the equilibrium price

figure 49.3

Consumer Surplus
The demand curve for computers is smooth because there are many potential buyers. At a price of $\$ 1,500,1$ million computers are demanded. The consumer surplus at this price is equal to the shaded area: the area below the demand curve but above the price. This is the total net gain to consumers generated from buying and consuming computers when the price is $\$ 1,500$.

- Example 1

table 49.1

Consumer Surplus When the Price of a Used Textbook Is $\$ 30$

Potential buyer	Willingness to pay	Price paid	Individual consumer surplus =Willingness to pay - Price paid
Aleisha	$\$ 59$	$\$ 30$	$\$ 29$
Brad	45	30	15
Claudia	35	30	5
Darren	25	-	-
Edwina	10	-	-
All buyers			Total consumer surplus $=\$ 49$

$\begin{aligned} & \text { Price of } \\ & \text { book }\end{aligned}$
$\$ 59$

- Example 2

If Aurelia is willing to pay $\$ 5$ for a concert ticket and Rose is willing to pay $\$ 10$ for a concert ticket and Kaylee is willing to pay $\$ 15$ for a concert ticket but the market price of the ticket is $\$ 8$, what is the total consumer surplus after all tickets are purchased?

	Aurelia$\$ 5 \times$
Ticket	Rose $\$ 10 \checkmark / 10-8=\$ 2$
$\$ 8$	Kale $\$ 15 \vee$

2 Concert Tickets with $\$ 9 \begin{gathered}\text { consumer } \\ \text { surplus }\end{gathered}$

Producer Surplus

- Meaning
- the difference between the price a sellers pays for and what he was actually willing to sell for
- Graph
- On a supply and demand graph, the producer surplus is above the supply curve but below the equilibrium price.

figure 49.8

Producer Surplus

Here is the supply curve for wheat. At a price of \$5 per bushel, farmers supply 1 million bushels. The producer surplus at this price is equal to the shaded area: the area above the supply curve but below the price. This is the total gain to producers-farmers in this case-from supplying their product when the price is $\$ 5$.

- Example 1

table 49.2

Producer Surplus When the Price of a Used Textbook Is \$30

| Potential
 seller | Cost | Price received | Individual producer surplus
 = Price received - Cost |
| :--- | :---: | :---: | :---: | :---: |
| Andrew | $\$ 5$ | $\$ 30$ | $\$ 25$ |
| Betty | 15 | 30 | 15 |
| Carlos | 25 | 30 | 5 |
| Donna | 35 | - | - |
| Engelbert | 45 | - | - |
| All sellers | | | Total producer surplus $=\$ 45$ |

- Example 2

If Aram is willing to sell a candy bar for $\$ 1$ and Nathan is willing to sell a candy bar for $\$ 1.50$ and Gerardo is willing to sell a candy bar for $\$ 2.00$, how many candy bars will be sold and what is the total producer surplus if the price of the candy bar is $\$ 2.00$?

Market Price:
Aram $\rightarrow \$ 1.00 \quad$, $2-1=\$ 1$
$\$ 2.00$
Gerard $\rightarrow \$ 2.00 \quad \sqrt{2}-2=50$
3 candy bars sold, $P S=1+0.50=\$ 1.50$

Total Surplus

- Meaning
- the sum of consumer and producer surplus
- Graph
- the area between the supply and demand curves up to the equilibrium quantity

Effects of Taxes on Surplus

- How does a tax affect hotel owners?
- An excise tax on hotel owners will shift the supply curve to the left
- The equilibrium price will be higher and the equilibrium quantity will be lower

- How does a tax effect hotel guests
- An excise tax on hotel guests will shift the demand curve to the left
- The equilibrium price will be higher and the equilibrium quantity will be lower
- The tax incidence in both cases are identical

- How the imposition of a tax will decrease consumer and producer surplus

Old CS: $A+B+E$
with tax CS: A

Old PS: $C+D+F$
with tax PS: D

Gout Rev: $B+C$
 Deadweight Loss: $E+F$

figure 50.11

A Tax Reduces Consumer and

 Producer SurplusBefore the tax, the equilibrium price and quantity are P_{E} and Q_{E}, respectively. After an excise tax of T per unit is imposed, the price to consumers rises to P_{C} and consumer surplus falls by the sum of the dark blue rectangle, labeled A, and the light blue triangle, labeled B. The tax also causes the price to producers to fall to P_{P}; producer surplus falls by the sum of the dark red rectangle, labeled C, and the light red triangle, labeled F. The government receives revenue from the tax, $Q_{T} \times T$, which is given by the sum of the areas A and C. Areas B and F represent the losses to consumer and producer surplus that are not collected by the government as revenue; they are the deadweight loss to society of the tax.

- Deadweight loss

figure 50.12

The Deadweight Loss of a Tax
A tax leads to a deadweight loss because it creates inefficiency: some mutually beneficial transactions never take place because of the tax, namely the transactions $Q_{E}-Q_{T}$. The yellow area here represents the value of the deadweight loss: it is the total surplus that would have been gained from the $Q_{E}-Q_{T}$ transactions. If the tax had not discouraged transactions-had the number of transactions remained at $Q_{E}-$ no deadweight loss would have been incurred.

International Trade

- Autarky
- the quality of being self-sufficient with no imports or exports, a closed economy
- Free trade and Tariffs
- Free trade increases total surplus
- Tariffs serve to reduce allocative efficiency

Importing Countries

- The World Price (P_{w}) will be below the autarky price and total surplus will increase
- Domestic consumers gain, domestic producers lose, but the net gain is positive

	Before Trade	After Trade	Change
Consumer Surplus	A	$\mathrm{A}+\mathrm{B}+\mathrm{D}$	$+(\mathrm{B}+\mathrm{D})$
Producer Surplus	$\mathrm{B}+\mathrm{C}$	C	-B
Total Surplus	$\mathrm{A}+\mathrm{B}+\mathrm{C}$	$\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$	+D
	The area D shows the increase in total surplus and represents the gains from trade.		

- Buyers are better off (consumer surplus rises from A to $A+B+D)$
- Sellers are worse off (producer surplus falls from $B+C$ to C)
- Total surplus rises by an amount equal to area D
- Trade raises the economic well-being of the country as a whole.

Exporting Countries

- The World Price $\left(\mathrm{P}_{\mathrm{w}}\right)$ will be above the autarky price and total surplus will increase
- Domestic consumers lose, domestic producers gain, but the net gain is positive

- Sellers are better off (producer surplus rises from C to $B+C+D$)
- Buyers are worse off (consumer surplus falls from $A+B$ to A)
- Total surplus rises by an amount equal to area D
- Trade raises the economic well-being of the country as a whole.

The Effects of a Tariff

- Tariff
- a government tax on imports or exports
- Example 1
- Graph what would happen if an importing country imposes a tariff in order to protect the corn industry from low world prices. Who gains? Who loses?
What's the deadweight loss? Is this allocatively

- Example 2

FIGURE 4
The Effects of a Tariff

A tariff reduces the quantity of imports and moves a market closer to the equilibrium that would exist without trade. Total surplus falls by an amount equal to area $D+F$. These two triangles represent the deadweight loss from the tariff.

Before Tariff	After Tariff	Change	
Consumer Surplus	$\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}$	$\mathrm{A}+\mathrm{B}$	$-(\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F})$
Producer Surplus	G	$\mathrm{C}+\mathrm{G}$	+C
Government Revenue	None	E	+E
Total Surplus	$\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}+\mathrm{G}$	$\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{E}+\mathrm{G}$	$-(\mathrm{D}+\mathrm{F})$
The area D + F shows the fall in total surplus and represents the deadweight loss of the tariff.			

2.7 - Production Function \& Firm Costs

Long Run vs. Short Run

- Production function
- The quantity of output a firm produces depends on the quantity of inputs
- This relationship is known as the firm's production function
- Inputs and outputs
- Fixed input is an input whose quantity is fixed for a period of time and cannot be varied (ie. Land)
- Variable input is an input whose quantity can vary over a short period of time (ie. Labor)
- Long run vs. short run
- In the long run, there are no fixed inputs. All costs are variable
- In the short run, at least one input will be fixed

Marginal Product of Labor (MPL)

- Definition
- change in quantity of output produced by one additional unit of labor
- Formula
- $M P L=\frac{\Delta Q}{\Delta L}$
- Graph
- Downward sloping
- Quantity of Labor on the x-axis
- MPL of labor on the y-axis
- Example 1

- The table shows the production function, the relationship between the quantity of the variable input (labor, measured in number of workers) and the quantity of output (wheat, measured in bushels) for a given quantity of the fixed input.
- It also shows the marginal product of labor on George and Martha's farm.
- The total product curve shows the production function graphically.
- It slopes upward because more wheat is produced as more workers are employed.
- It also becomes flatter because the marginal product of labor declines as more and more workers are employed.

- The marginal product of labor curve plots each worker's marginal product, the increase in the quantity of output generated by each additional worker.
- The change in the quantity of output is measured on the vertical axis and the number of workers employed on the horizontal axis.
- The first worker employed generates an increase in output of 19 bushels, the second worker generates an increase of 17 bushels, and so on.
- The curve slopes downward due to the diminishing returns to labor

Different Types of Marginal Returns

- Increasing marginal returns
- The MPL increases as you hire more workers
- Diminishing marginal returns
- The MPL decreases but the total output increases
- Negative marginal returns
- The MPL decreases as well as the total output
- Graph

Was Thomas Malthus Correct?

- In his book, An Essay On the Principle of Population, Thomas Malthus predicted that, based on the principle of diminishing marginal returns, we would have to brace ourselves for a widespread starvation of the masses.
- Thomas Carlyle coined the phrase "dismal science" - the term has caught on to describe economics as a gloomy subject
- Was Malthus right?
- No, he did not account for the increase in TECHNOLOGY!

Fixed, Variable and Total Cost

- Fixed cost
- cost that does not depend on the quantity of output produced (ie. franchising fee)
- Variable cost
- cost that depends on the quantity of output produced (ie. bread, cheese, parttime workers)
- Total cost
- Sum of fixed and variable cost
- $T C=F C+V C$
- Graph

Point on graph	Quantity of labor L (workers)	Quantity of wheat Q (bushels)	Variable cost VC	Fixed cost FC	Total cost (C $=F C+V C$
A	0	0	$\$ 0$	$\$ 400$	$\$ 400$
B	1	19	200	400	600
C	2	36	400	400	800
D	3	51	600	400	1,000
E	4	64	800	400	1,200
F	5	75	1,000	400	1,400
G	6	84	1,200	400	1,600
H	7	91	1,400	400	1,800
I	8	96	1,600	400	2,000

- The total cost curve slopes upward because the number of workers employed, and hence total cost, increases as the quantity of output increases.
- The curve gets steeper as output increases due to diminishing returns to labor.

Average Cost

- Average total cost
- total cost per unit of output
- $A T C=\frac{T C}{Q}$
- Average fixed cost
- fixed cost per unit of output
- $A F C=\frac{F C}{Q}$
- Average variable cost
- variable cost per unit of output
- $A V C=\frac{V C}{Q}$

table 55.2

Average Costs for Selena's Gourmet Salsas

Quantity of salsa Q (cases)	Total cost TC	Average total cost of case $A T C=T C / Q$	Average fixed cost of case $A F C=F C / Q$	Average variable cost of case $A V C=V C / Q$
1	\$120	\$120.00	\$108.00	\$12.00
2	156	78.00	54.00	24.00
3	216	72.00	36.00	36.00
4	300	75.00	27.00	48.00
5	408	81.60	21.60	60.00
6	540	90.00	18.00	72.00
7	696	99.43	15.43	84.00
8	876	109.50	13.50	96.00
9	1,080	120.00	12.00	108.00
10	1,308	130.80	10.80	120.00

Marginal Cost

- Meaning
- change in total cost generated by one additional unit of output
- change in total cost divided by change in quantity of output
- Formula
- $M C=\frac{\Delta T C}{\Delta Q}$

table 55.1

Costs at Selena's Gourmet Salsas

Quantity of salsa Q (cases)	Fixed cost FC	Variable cost VC	Total cost $T C=F C+V C$	$\begin{aligned} & \text { Marginal cost } \\ & \text { of case } \\ & M C=\Delta T C / \Delta Q \end{aligned}$
0	\$108	\$0	\$108	
1	108	12	120	\$12
2	108	48	156	36
3	108	108	216	
4	108	192	300	
5	108	300	408	
6	108	432	540	132
7	108	588	696	156
8	108	768	876	180
9	108	972	1,080	204
10	108	1,200	1,308	228

Relationship Between ATC and MC Curves

- At the minimum-cost output, average total cost is equal to marginal cost - ALWAYS!
- At output less than the minimum-cost output, MC is less than ATC and the ATC is rising
- At output greater than the minimum-cost output, MC is greater than ATC and ATC is rising
- Ideal Graph

- MC: marginal cost
- ATC: average total cost
- AVC: average variable cost
- AFC: average fixed cost
- Typical Graph

- Many firms experience increasing marginal product before diminishing marginal product.
- As a result, they have cost curves shaped like those in this figure.

True or False Questions

- ATC is always greater than AVC by a constant amount
- Answer: False
- Reason: The distance between ATC and AVC is AFC
- If a firm shuts down in the short run, its profits will equal zero
- Answer: False
- Reason: Fixed cost is a cost that you will incur even if you shut down
- Equations:
- Total cost $=$ Fixed cost + Variable cost
- Profit $=$ Total revenue - Total cost
- Price vs. average variable cost
- If P > AVC, stay in business
- If $P<A V C$, then shutdown

2.8 - Long-Run Costs \& Economies of Scale

Short-Run vs. Long-Run Costs

- Business must make decisions on whether to spend money now (fixed) or spend money later (variable)
- If a firm plans on producing a high amount of output, it might make sense to have a high fixed cost
- Conversely, if a firm plans on producing a small amount of output, it might make sense to have a low fixed cost
- Choosing the optimal level of fixed cost requires a lot of planning

	Low fixed cost (FC = \$108)			High fixed cost (FC = \$216)		
Quantity of salsa (cases)	$\begin{aligned} & \text { High } \\ & \text { variable } \\ & \text { cost } \end{aligned}$	Total cost	```Average total cost of case ATC ```	Low variable cost	Total cost	Average total cost of case $A T C_{2}$
1	\$12	\$120	\$120.00	\$6	\$222	\$222.00
2	48	156	78.00	24	240	120.00
3	108	216	72.00	54	270	90.00
4	192	300	75.00	96	312	78.00
5	300	408	81.60	150	366	73.20
6	432	540	90.00	216	432	72.00
7	588	696	99.43	294	510	72.86
8	768	876	109.50	384	600	75.00
9	972	1,080	120.00	486	702	78.00
10	1,200	1,308	130.80	600	816	81.60

Long-Run Average Total Cost (LRATC)

- Meaning
- the relationship between output and average total cost when fixed cost has been chosen to minimize average total cost for each level of output
- If there are many possible choices of fixed cost, the long-run average total cost curve will have the familiar, smooth U shape.
- Graph

- Short-run and long-run average total cost curves differ because a firm can choose its fixed cost in the long run.
- If Selena has chosen the level of fixed cost that minimizes short-run average total cost at an output of 6 cases, and actually produces 6 cases, then she will be at point C on LRATC and ATC6.
- But if she produces only $\mathbf{3}$ cases, then she will move to point B.
- If she expects to produce only 3 cases for a long time, in the long run she will reduce her fixed cost and move to point A on ATC3.
- Likewise, if she produces 9 cases (putting her at point Y) and expects to continue this for a long time, she will increase her fixed cost in the long run and move to point \mathbf{X}
- Example
- Suppose that a firm that has historically produced 15,000 caps, experiences a sharp, permanent increase in demand that leads it to produce 25,000 units. Explain how its average total cost will change in the short run and in the long-run. Explain what the firm should do instead if it believes the change in demand is temporary.

Returns to Scale

- Economies of scale
- when long-run average total cost declines as input increases
- ATC decreases as \mathbf{Q} increases
- Diseconomies of scale
- when long-run average total cost increases as output increases
- ATC increases as \mathbf{Q} increases
- Graph

Sources of Economies of Scale

- Increased specialization that larger output levels allow
- a larger scale of operation means that workers are very specialized individuals
- Large initial set-up cost
- in auto manufacturing, electricity generating or petroleum refining, there exist high fixed costs to enter the industry
- Network externalities
- the effect that one user of a good or service has on the value of that product to other people
- When network effect it present, the value of a product or service if dependent on the number of others using it (ie. Telephone, Facebook, Twitter, eBay)

Sunk Cost

- Definition
- cost that should be ignored when making a decision
- A cost that has already happened that cannot be recovered
- As the old saying goes, "There's no use crying over spilled milk"
- Example
- You go to an All You Can Eat Brazilian BBQ Restaurant, pay $\$ 40$ after eating a salad and you are full.
- What's the rational thing to do in order to get your money's worth?
- WALK OUT! SUNK COST!
- Marginal Benefit > Marginal Cost: Keep doing

Marginal Cost > Marginal Benefit: Leave!

Summary of Costs

	Measurement	Definition	Mathematical term
Short run	Fixed cost	Cost that does not depend on the quantity of output produced	FC
	Average fixed cost	Fixed cost per unit of output	$A F C=F C / Q$
Short run and long run	Variable cost	Cost that depends on the quantity of output produced	VC
	Average variable cost	Variable cost per unit of output	$A V C=V C / Q$
	Total cost	The sum of fixed cost (short run) and variable cost	$\begin{aligned} & T C=F C \text { (short run) } \\ & +V C \end{aligned}$
	Average total cost (average cost)	Total cost per unit of output	$A T C=T C / Q$
	Marginal cost	The change in total cost generated by producing one more unit of output	$M C=\Delta T C / \Delta Q$
Long run	Long-run average total cost	Average total cost when fixed cost has been chosen to minimize average total cost for each level of output	LRATC

3.1 - Perfect Competition

Types of Market Structure

- Perfect Competition
- many firms each sell an identical product
- Monopoly
- a single firm sells a single, undifferentiated product
- Oligopoly
- a few firms (usually 2-4) selling either identical or an undifferentiated product (ie. steel or cigarettes)
- Monopolistic Competition
- many firms each sell differentiated products

- Definition
- relationship between the price of a good and the total output of the industry as a whole
- When the market price equals or exceed the shut-down price, firms will continue to produce at the point which the price equals marginal cost
- At any price above the AVC, the short-run individual supply curve is the firm's marginal cost (MC) curve

- The short-run industry supply curve, S , is the industry curve.
- Below the shut-down price of $\$ 10$, no producer wants to produce in the short run.
- Above \$10, the short-run industry supply curve slopes upward, as each producer increases output as price increases.
- It interescts the demand curve, D, at point $\mathbf{E}_{\text {мкт }}$, the point of short-run market equilibrium, correspongding to a market price of $\$ 18$ and a quantity of 5000 trees.

Long-run industry supply curve

- Meaning
- shows how the quantity supplied responds to the price once producers enter or exit the industry
- Profits cause more firms to enter, which shifts the supply curve to the right, resulting in lower prices and higher industry output.
- However, individual output by firms decreases as does profit until there is no economic profit.

Point $E_{M K T}$ of panel (a) shows the initial short-run market equilibrium. Each of the 100 existing producers makes an economic profit, illustrated in panel (b) by the green rectangle labeled A, the profit of an existing firm. Profits induce entry by additional producers, shifting the short-run industry supply curve outward from S_{1} to S_{2} in panel (a), resulting in a new short-run equilibrium at point $D_{M K T}$, at a lower market price of $\$ 16$ and higher industry output. Existing firms reduce output
and profit falls to the area given by the striped rectangle labeled B in panel (b). Entry continues to shift out the shortrun industry supply curve, as price falls and industry output increases yet again. Entry of new firms ceases at point $C_{\text {MKT }}$ on supply curve S_{3} in panel (a). Here market price is equal to the break-even price; existing producers make zero economic profits, and there is no incentive for entry or exit. So $\mathrm{C}_{M K T}$ is also a long-run market equilibrium.

- Profit $=$ Total Revenue - Total Cost $=$ Price * Quantity - Average Total Cost * Quantity

The Effect of an Increase in Demand

- An increase in the demand for a product causes the equilibrium price and quantity to increase in the market.
- An increase in demand raises price and profit, which causes more suppliers to enter

the market

- Higher industry output from new entrants drives price and profit back down to its original equilibrium

Panel (b) shows how an industry adjusts in the short and long run to an increase in demand; panels (a) and (c) show the corresponding adjustments by an existing firm. Initially the market is at point $X_{M K T}$ in panel (b), a short-run and long-run equilibrium at a price of $\$ 14$ and industry output of Q_{x}. An existing firm makes zero economic profit, operating at point X in panel (a) at minimum average total cost. Demand increases as D_{1} shifts rightward to D_{2} in panel (b), raising the market price to $\$ 18$. Existing firms increase their output, and industry output moves along the short-run industry supply curve S_{1} to a short-run equilibrium at $Y_{M K T}$. Correspondingly, the existing firm in panel (a) moves from point X to point Y. But at a price of $\$ 18$ existing firms are profitable. As shown in panel (b), in the long
run new entrants arrive and the short-run industry supply curve shifts rightward, from S_{1} to S_{2}. There is a new equilibrium at point $Z_{M K T}$, at a lower price of $\$ 14$ and higher industry output of Q_{z}. An existing firm responds by moving from Y to Z in panel (c), returning to its initial output level and zero economic profit. Production by new entrants accounts for the total increase in industry output, $\mathrm{Q}_{z}-\mathrm{Q}_{x}$. Like $X_{M K T}, Z_{M K T}$ is also a short-run and long-run equilibrium: with existing firms earning zero economic profit, there is no incentive for any firms to enter or exit the industry. The horizontal line passing through $X_{M K T}$ and $Z_{M K T}, L R S$, is the long-run industry supply curve: at the break-even price of $\$ 14$, producers will produce any amount that consumers demand in the long run.

Perfect Competition

- Price-taking firm
- the actions of the firm has no impact on the market price of the product
- Price-taking consumer
- what consumers do have no bearing on the price of the product that is purchased
- Perfectly competitive market
- all participants are referred to as price takers, taking whatever the markets gives them
- Three characteristics of perfect competition
- Many firms. No individual firm can have a disproportionately large market share
- Item sold is a commodity, or a product that is the same no matter who sells or buys it
- Free entry and exit. If there's profit, firms enter. If there's loss, firms exit.
- Optimal output rule
- producing the quantity of output at which the market price is equal to the marginal cost of the last unit produced
- Equation
- Marginal Cost $=$ Marginal Revenue $=$ Price $=$ Average Revenue $=$ Demand
- How to remember: Mc= Mr. Pard

Firm

- small q for quantity of a firm

Perfect Competition in Long-Run Equilibrium

- Long-run competitive equilibrium
- All firms in an industry are maximizing profit, no firm has an incentive to enter or exit, and price is such that quantity supplied equals quantity demanded
- Conditions
- There is no economic profit
- No firms enter or leave
- The market is always right
- Label all points correctly!

Perfect Competition and Short-Run Market Price

- Making Short-Run Profit
- $M R=P=A R=D$ is above the ATC curve
- Make sure the ATC and MC intersect at the minimum ATC
- The market is always right!
- Economic Profit shaded in green

- Incurring Short-Run Loss
- $M R=P=A R=D$ is below the ATC curve
- Make sure the ATC and MC intersect at the minimum ATC
- The market is always right!
- Economic Loss shaded in red

- Summary

(b) Market Price $=\$ 10$

Summary of Profitability and Production

- Long-run (Profitability)

Profitability condition (minimum $\boldsymbol{A T C}=$ break-even price)	Result
$P>$ minimum $A T C$	Firm profitable. Entry into industry in the long run.
$P=$ minimum $A T C$	Firm breaks even. No entry into or exit from industry in the long run.
$P<$ minimum $A T C$	Firm unprofitable. Exit from industry in the long run.

- Short-run (Production)

$P>$ minimum $A V C$
$P=$ minimum $A V C$
$P<$ minimum $A V C$

Result

Firm produces in the short run. If $P<$ minimum $A T C$, firm covers variable cost and some but not all of fixed cost. If $P>$ minimum ATC, firm covers all variable cost and fixed cost.

Firm indifferent between producing in the short run or not. Just covers variable cost.
Firm shuts down in the short run. Does not cover variable cost.

3.2 - Monopoly

Characteristics of Monopoly

- Meaning
- Monopolists is the only producer of a good with no close substitutes
- Tens to have at least one of these four barriers to entry
- Control of a scare resource of input
- Cecil Rhodes made De Beers what it is by controlling most of the world's diamond mines.
- Economies of scale
- large firms tend to have cost advantages in markets characterized by economies of scale, or a natural monopoly
- Technological superiority
- short-term advantage for companies although network externalities are very crucial as well
- Government monopolies
- patent (monopoly of invention)
- copyright (monopoly of literary or artwork)

Monopoly and Price Discrimination

- Price discrimination (3rd degree)
- policy of charging different prices to different consumers for the same good
- ie. movie tickets, rebates, airline flights
- Perfect price discrimination (1st degree)
- takes place when a monopolist charges each consumer his or her willingness to pay the maximum that the consumer is willing to pay
- No consumer surplus

Decreasing Marginal Revenue

- The increase in production by a monopolist has two opposing effects on revenue
- Quantity effect
- One more unit is sold, increasing total revenue by the price at which the unit is sold
- Price effect
- In order to sell the last unit, the monopolist must cut market price on all unites sold. This decreases total revenue
- What is the relationship between Demand curve and MR curve in a monopoly?
- MR curve is below the Demand curve and steeper than the Demand curve.
- Because the price on all units sold must fall if the monopoly increases production
- Example

Price of diamond P	Quantity of diamonds a	$\begin{gathered} \text { Total } \\ \text { revenue } \\ T R=P \times Q \end{gathered}$	Marginal revenue $M R=\Delta T R / \Delta Q$
\$1,000	0	\$0	
950	1	950	
900	2	1,800	
850	3	2,550	
800	4	3,200	
750	5	3,750	
700	6	4,200	
650	7	4,550	
600	8	4,800	
550	9	4,950	
500	10	5,000	
450	11	4,950	
400	12	4,800	
350	13	4,550	
300	14	4,200	
250	15	$3,750$	
200	16	3,200	
150	17	2,550	
100	18	1,800	
50	19	950	
0	20		

Monopoly and Profit

- Profit $=T R-T C=\left(P^{*} Q\right)-(A T C$ * $Q)$

Price, cost,
marginal
revenue

In this case, the marginal cost curve has a "swoosh" shape and the average total cost curve is U-shaped. The monopolist maximizes profit by producing the level of output at which $M R=M C$, given by point A, generating quantity Q_{M}. It finds its monopoly price, P_{M}, from the point on the demand curve directly above point A, point B here. The average total cost of Q_{M} is shown by point C. Profit is given by the area of the shaded rectangle.

- Monopoly Incurring a Loss

Monopoly vs. Perfect Competition

- $\mathbf{P}=\mathbf{M R}=\mathbf{M C}$ at the perfectly competitive firm's profit-maximizing quantity of output
- $\mathbf{P}>\mathbf{M R}=\mathbf{M C}$ at the monopolist's profit-maximizing quantity of output
- Monopoly charges a higher price, produces a lower quantity and earns a profit
- Not Allocatively Efficient
- profit
- deadweight loss
- There does not exist maximum consumer and producer surplus

Reading a Monopoly Graph

- There is one stadium in Parkville. The stadium's demand and cost curves are shown below. The stadium currently relies on an admission charge for its revenue.

- Using the labeling of the graph above, identify the price and quantity that maximize profit
- Price: P5
- Quantity: Q2
- Using the labeling of the graph above, identify the price and quantity that maximized total revenue
- When MR intersects the x-axis
- Price: P3
- Quantity: Q4
- Using the labeling of the graph above, identify the price and quantity that maximizes attendance while still breaking even
- When demand curve intersects ATC curve
- Price: P2
- Quantity: Q5
- Assuming the existence of an opportunity cost, at P2, indicate whether stadium's accounting profits would be positive, negative, or zero. Explain why.
- Economic Profit $=$ Total Revenue - Total Cost $=0$
- Economic Profit $=$ Accounting Profit - Opportunity Cost $=0$
- Accounting Profit $=$ Opportunity Cost
- Answer: positive
- When the attendance is Q1, is the demand inelastic, elastic or unitary elastic? Explain
- Answer: Elastic
- Explanation: Marginal Cost is positive or the price is on the left side of the demand curve
- A monopolist will always produce on the elastic portion of the demand curve

figure 6-5 The Price Elasticity of Demand Changes Along the Demand Curve

Demand is elastic:
a higher price reduces total revenue.

Demand is inelastic: a higher price increases total revenue.

Demand Schedule and Total Revenue for a Linear Demand Curve		
Price	Quantity demanded	Total revenue
$\$ 0$	10	$\$ 0$
1	9	9
2	8	16
3	7	21
4	6	24
5	5	25
6	4	24
7	3	21
8	2	16
9	1	9
10	0	0

The upper panel shows a demand curve corresponding to the demand schedule in the table. The lower panel shows how total revenue changes along that demand curve: at each price and quantity combination, the height of the bar represents the total revenue generated. You can see that at a low price, raising the price increases total revenue. So demand is inelastic at low prices. At a high price, however, a rise in price reduces total revenue. So demand is elastic at high prices.

Demand is elastic: a higher price reduces total revenue.

Demand is inelastic: a higher price increases total revenue.

Microeconomics Page 109

3.3 - Monopoly \& Public Policy

Welfare Effects of Monopoly

- Monopoly vs. Perfect Competition (Surplus)
- Assume a downward sloping demand curve for both monopoly and prefect competition with a constant MC as well as ATC
- In a monopoly, the marginal revenue will be below the demand curve.
- Consumer surplus is reduced and deadweight loss (DWL) is created
- Graph
Perfect Competition

- Summary
- By holding output level below the level at which marginal cost is equal to the market price, a monopolist increases profits but decreases consumer surplus
- Mutually beneficial transactions do not occur, but a monopolist is (naturally) looking out for its own interests.
- Perfectly competitive firms also profit-maximize, but they produce where $\mathbf{P}=\mathbf{M C}$, which is also MR = MC
- Monopolists produce at $\mathbf{M R}=\mathbf{M C}$, but $\mathbf{P}>\mathbf{M C}$
- This creates deadweight loss or DWL

Public Ownership of Monopolies

- Many countries opt for public ownership of natural monopolies (economies of scale)
- In theory, the government can set prices based on efficiency $(\mathbf{P}=\mathbf{M C})$ rather than profit maximization $(M R=M C)$
- In practice, publicly owned firms have less incentives to keep costs down or offer high quality
- Electricity, local phone service, water and gas are examples of regulated monopolies
- Should the government regulate cable TV?

Unregulated vs. Regulated Natural Monopoly

- Assume a demand curve for both situations with a demand intersecting ATC on downward-sloping portion
- Unregulated monopoly charges MR = MC (econ profit)
- Regulated monopoly charges (normal profit)

FIgure 13-9 Unregulated and Regulated Natural Monopoly

(a) Total Surplus with an Unregulated Natural Monopolist
(b) Total Surplus with a Regulated Natural Monopolist

This figure shows the case of a natural monopolist. In panel (a), if the monopolist is allowed to charge P_{M}, it makes a profit, shown by the green area; consumer surplus is shown by the blue area. If it is regulated and must charge the lower price P_{R}, output increases from Q_{M} to Q_{R} and consumer surplus increases. Panel (b) shows what happens when the
monopolist must charge a price equal to average total cost, the price P_{R}^{*}. Output expands to Q_{R}^{*}, and consumer surplus is now the entire blue area. The monopolist makes zero profit. This is the greatest total surplus possible when the monopolist is allowed to at least break even, making P_{R}^{*} the best regulated price.

- Assume an unregulated monopoly.
- The monopolist's quantity produced
- where MR = MC, at point c
- Answer: Q1
- The monopolist's price
- above point c, at point a
- Answer: P3
- The economic profit of the monopolist
- between ac and the y-axis
- Answer: acP1P3
- The area of deadweight loss
- between ac and demand
- Answer: acf
- Assume the monopolist can perfectly price discriminate
- The quantity produced
- where $M R=M C=D$, at point f
- Answer: Q3
- The total revenue of the monopolist
- asking for revenue, not profit
- Answer: P4fQ3O
- Assume a monopolist is regulated to maximize total surplus
- The socially efficient quantity
- socially efficient = allocatively efficient = when \mathbf{P} equals $\mathbf{M C}=$ maximum of consumer surplus and producer surplus
- Answer: Q3
- The consumer surplus at the socially efficient quantity
- Answer: P4P1f
- Is the monopolist facing regulation earning a positive economic profit, earning zero economic profit, or incurring a loss? Explain your answer.
- at point f , where price $=$ marginal cost $=$ average total cost
- Accounting profit $=T R-T C=Q^{*}(P-A T C)=0$
- Is point f in the elastic, inelastic, or unit elastic portion of the demand curve? Explain.
- MR > 0, elastic
- MR < 0, inelastic
- MR = 0, unit elastic

More Monopoly Practice Problem

- Zachrail, the only provider of train services between two cities, is currently incuring economic losses
- Show Zachrail's loss-minimizing price and quantity
- loss-minimizing = profit-maximizing
- the point on demand curve above the point where $M R=M C$
- Show the area of economic loss
- the point on ATC curve above the point where $\mathrm{MR}=\mathrm{MC}$
- Identify the allocatively efficient quantity
- the point where $D=M C$

- If Zachrail raised the price above the profit-maximizing price, would total revenue increase, decrease or not change? Explain.
- If elastic, $\mathbf{P} \uparrow$, $\mathbf{T R} \downarrow$
- If elastic, $\mathbf{P} \downarrow, \mathbf{T R} \uparrow$
- If inelastic, $\mathbf{P} \uparrow$, $\mathbf{T R} \uparrow$
- If inelastic, $\mathbf{P} \downarrow, T R \downarrow$
- Would a per-unit tax or per-unit subsidy be advisable in this situation if the goal is to produce at the allocatively efficient point? Explain why.
- Answer: Per-unit subsidy
- Explanation: lead towards allocatively efficient point

- Assume instead that a lump-sum subsidy is provided to Zachrail. In the short run, will deadweight loss increase, decrease of not change? Will Zachrail's economic losses increase, decrease or not change?
- Lump-sum subsidy lowers FC, which lowers the ATC
- Answer: the deadweight loss will not be changed, the losses will decrease

3.4 - Oligopoly \& Game Theory

Characteristics of an Oligopoly

- Characterized by interdependence, a relationship in which the outcome of each firm depends on the actions of the others
- There are a "few" sellers in the market with significant control of pricing
- If there are only two sellers, it's duopoly
- Firms in an oligopoly have an incentive to collude, which is the act of "cooperating" or "not cheating" in order to increase joint profits
- Cartel is a group of producers that agree to restrict output in order to increase prices and profits

Game Theory

- The study of behavior in situations of interdependence is knowns as game theory
- We will be examining a two-player model
- the x-player and the y-player (\mathbf{x}, \mathbf{y})
- In our pay off matrix, there will only be two possible choices
- High/Low
- Confess/Not Confess
- Early/Late
- Two firms are playing a "game" in which profits are dependent on other firms' actions
- Applications in economics, military strategy, politics
- John Nash, a mathematician, won the Nobel Prize in economics for his work
- Nash equilibrium is the result when each player chooses the action that maximizes his or her payoff, given the actions of other players

Prisoner's Dilemma

- Dominant strategy means that you will choose the same option regardless of what your opponents does
- Prisoner's dilemma means that there exists a collusive outcome that will benefit both players but they will have a dominant strategy which will yield to the Nash Equilibrium of the lowest combined profit possible
- Example 1 (classic)

- Two firms, ADM and Ajinomoto, must decide how much lysine to produce.
- The profits of the two firms are interdependent: Each firm's profit depends not only on its own decision but also on the other's decision.
- Both firms will be better off if they both choose the lower output
- But it is in each firm's individual interest to choose the higher output.
- Example 2 (One Dominant, One Not)

Ed's Aloha Buslines

			Early		Late
	Early		A $(\$ 900,$	$\$ 250)$	B $(\$ 600, \$ 800)$
	Late		$\begin{aligned} & \mathrm{C} \\ & (\$ 700, \end{aligned}$	$\$ 500)$	$\mathrm{D}_{(\$ 800, \$ 1000)}$
	Allen			Ed	
	If early	ly Early		Late	
	If late	Late		Late	
		No do	inant strategy	Late	

- Nash equilibrium: D
- Overcoming prisoner's dilemma
- Strategic behavior is when a firm attempts to influence the future behavior of other firms.
- Tit for tat strategy involves playing cooperatively at first and then adjusting accordingly afterwards.
- Firms in an oligopoly that do not explicitly form a cartel can engage in "tacit collusion" by limiting production and raising prices without any written agreements
- Collusion, in any firm, is much more likely to take place when there are few firms
- With more and more firms, there exists less incentive for a firm to "cheat"
- Example 3

- Does H \& IPM have a dominant strategy?
- Yes, to advertise
- At the Nash Equilibrium, what is H \& IPM's daily profit? What is Hello Market's daily profit?
- Choose B
- H \& IPM's daily profit: \$480
- Hello Market's daily profit: \$350
- Suppose the cost of advertising is $\$ 50$ per day, redraw the matrix to include advertising costs for each firm

